

Mr. Paul Revell

CRC ORE

General Manager

- Research & Innovation

CRC ORE Research Pipeline Overview

CRC ORE Annual Assembly 2017

BusinessCooperative Research
Centres Programme

CRC ORE Research Pipeline Overview

CRC ORE Annual Assembly 2017

CRC ORE Applied Research Program Overview – Based on End Point Deployment

Preferential grade deportment by size 1

In-situ Sensing Mineral

Differential blasting for grade by size 2

In-situ Sensing
Elemental
Imdex, Sodern, CSIRO

Sensor based BULK sorting 3 Sensor based STREAM sorting 4

Coarse gravity separation

Scan Sensing - Elemental

Gamma Activation Analysis - CSIRO

Scan Sensing - Mineral

LIBS - NRC, Up-conversion Fluorescence - Uni. Of Adelaide

Instrumentation & Application – Imdex, Sodern, Atlas, Mining3, Orica, IDG (ITB)

Heterogeneity Tools - CODES, Mining3, Data61, Uni. of Adelaide, Curtin

Blast Design
Orica, Mining3, IDG

Blast Design Orica, Mining3, IDG

Spatial Modelling - IDG, University of Adelaide

Response Ranking & Economic Optimisation - IDG

In Pit Crush, Separate & Surge Control – Hatch, Mining3

Breakage Response Modelling P420F - Curtin, P9Q - JKMRC

Coarse Separation

DMS, IPJ, Leach Reflux Classifier Coarse Particle Flotation

Integrated Extraction Simulator – IDG, JKTech, P9Q, P420F, Curtin, UQ, QUT

Comminution Optimised for Grade Engineering – JKMRC, Curtin, CSIRO, Gekko, IDG

Program 4: Control Architecture for Grade Engineering (GE)

GE Scenario Planning, GE Mine Planning & Scheduling, Multi-dimensional Data Analytics, Decision Logic, Organisational Change (Manufacturing Execution System)

Current

Planned

CRC ORE 3

CRC ORE PROJECT PIPELINE

					Timeline is calendar year																				
		20	015	2016				20	17		2018				2019				2020			2021			
Development Projects	Partners	Q3		Q1	Q2		Q4	Q1	Q2		24	Q1	Q2	QЗ	Q4	Q1			Q4	Q1			Q4	Q1	
PROGRAM 1: DEFINE											Ė														
P1-001 & P1-009: Gamma Activation Analysis for geo-sensing	CSIRO				Cor		TRL2-T	RL3	De	sign TF P1- 0		RL5			ntial fo Symen										
P1-002: PGNAA elemental logging for Instrumenting the Bench	CSIRO				Р		/pe TRL - 002	.5																	
<u>P1-003</u> : Magnetic resonance of covellite for geo-sensing	CSIRO				Р		/pe TRL - 003	4																	
P1-004: GE View an online tool for assessing Grade Engineering opportunities	MRIWA			En		datal P1-00	base TR <u>4</u>	RL4				be inco Mining													
<u>P1-005</u> : Upconversion fluorescence of minerals for geo-sensing	Uni of Adelaide							Ph		Design	TRL	2-TRL4 P1-00 .													
<u>P1-006</u> : Geological controls on grade by size deportment	UTAS										Phase 1 Models TRL2-TRL4 Phase 2: Testing TRL5 <u>P1-006</u>														
<u>P1-007</u> : Surface techniques for geo-sensing	UTAS					Re	view T P1-00																		
PROGRAM 2: SEPARATE																									
P2-001: Sensors for rock mass characterisation	Mining ³									RL4-TRI P2-001			kt Phas outcon												
<u>P2-002</u> : Blast design optimisation for Grade Engineering	Mining ³									TRL3- P2- 0		Next		depe.	ndent										
P2-003: Orebody DNA	Mining ³							F		rpe TRL P2-003				and			y to sit e GE								
P2-004: LIBS analysis for Geo-sensing	NRC												s TRL2- P1-00 4												
P2-005: Simulation of Grade Engineering mining processes	UQ, Mining ³										Sim	ulation													
M3-003: Orebody DNA- Volumetric Analytics for Grade Engineering	Mining ³									٨	TRL: 13-0														
PROGRAM 3: EXTRACT																									
P3-001: IES Baseline Project	CRC ORE										IES	Develo	pment P3-00 1		-TRL6										
P3-006: AMIRA P9Q	UQ, Amira and others												ls TRL5 P3-00 6												
P3-005: AMIRA P420F	Curtin									Model. P3-00 !															
P3-007: Simulation Stream Behaviour	UQ, AMIRA and others														tion TR -007	RL5									
P3-008: Comminution optimisation for Grade Engineering	JKMRC									TF	L4-1 93- 0 0														
P3-010: Beneficiation of Hard Rock Lithium Ore	Curtin															TRL3 P3-01									
PROGRAM 4: CONTROL																									
<u>P4-001</u> & P4-003: Data driven models	QUT						TRL2 - 001			Мо	P4	TRL2-T I-003	RL5												
P4-004: Implementation Accelerator	Clareo											4-TRL7 1-004													
P4-007: Optimised Production Scheduling for Grade Engineering	Curtin																3-TRL5 1 -007								

Future Research themes

Geo-sensing

- Multi-sensor integration.
- Rapid hold drilling & in-situ sensor applications.
- Direct sensing of mineralisation & blast optimisation parameters.

Resource Interpretation

- Geo-spatial modelling.
- Enhanced orebody characterisation within Grade Engineering context.
- Integrating Grade Engineering attributes into mine planning tools.

Separation

- Gravity separation technologies (GE lever 5).
- Enhancing the linkage between comminution & flotation models.
- Developing the control architecture for Grade Engineering implementation.

P1-005:

Upconversion Fluorescence (UF) for real-time mineral identification

Create Upconversion Fluorescence facility and explore UF from minerals to find mineral-specific UF for real-time mineral sensing

Affiliation

Resources

- 4 academic staff
- 1 PhD students
- Sept 2016 Sept 2019

Specialisation

- Laser and optics development
- Luminescence studies

Key results to date

- Facility creation on track key hardware integrated into facility; software integration on track.
- Initial tests of system performance, data collection and processing techniques underway.

- Goal 1: Library of UF wavelengths suitable for real-time identification of specific mineral species.
- Goal 2: Concept demonstration of sensor systems for excitation and detection UF from target minerals.
- Benefits: real-time, mineral species-specific, non-contact; applicable to multiple areas of mining and processing.

P1-006:

Geometallurgical controls on grade by size

Evaluate how mineralogical/textural heterogeneity drives grade by size fractionation for predictive modelling

Affiliation

Resources

- Nathan Fox and Ron Berry
- 2 PhD and 2 MSc students
- October 2016 to June 2021

Specialisation

- Mineral systems
- Ore mineralogy and textures
- Geometallurgy

Key results to date

- Workflow designed to utilise emerging technologies for mineral mapping and feature extraction
- Dedicated study sites (Au) with integration in other CRC ORE study sites (porphyry Cu).

- Geometallurgical framework for predicting grade by size fractionation as a block model attribute.
- Provides a physical understanding of controls on mineral fractionation in mineral systems.

P1-009:

Gamma activation for bulk gold ore sorting

A design study for a pilot bulk sorting plant capable of measuring gold on-belt at ~0.1-0.2ppm

Affiliation

Resources

- 4 researchers
- 1 student
- Apr 2018 Mar 2018

Specialisation

Measurement Physics

Key results to date

- Good results for simulated sensitivity and plant shielding.
- Proven success with switching of detectors.
- Sensible sample results.
- No direct measure of gold on-belt contemplated before this research project.

- Direct gold measurement for relevant grades and ore flow rates.
- A pilot demonstration of the technique, preferably at Kalgoorlie Hub.
- Apply in mining situations to reject significant fractions of gangue through bulk ore sorting.

P2-001: In-Situ Rock Mass Characterisation - Phase 1

Identify superior approaches and systems for characterising in-situ material to enable optimal blast designs for ore upgrading

Affiliation

Resources

- 4 Mining3 staff,
- Technology experts
- Nov 2016 Dec 2017

Specialisation

- Differential blasting
- Ore body knowledge

Key results to date

- Identified existing and emerging technologies for application to in-situ rock mass characterisation.
- Assessed new approaches to combining these for application and deployment.

- Platforms such as enhanced MWD, drones or rovers with multiple sensors, integrated via data fusion techniques
- Determination of in-situ spatial heterogeneity at the sub-metre scale required for differential blast design

P2-002: Advanced blast design for maximising value through **Grade Engineering levers**

Developing optimised designs for GE in a production environment

Affiliation

Resources

- 6 Mining3 staff,
- 1 MEng student
- July 2017 Feb 2018

Specialisation

- Differential Blasting
- Optimisation

Key results to date

- Fragmentation models and optimisation methods reviewed and selected.
- MVP architecture decided and being coded.

- A module that enables any Drill and Blast Engineer on site to create a GE differential blast design with the optimal value identified via IFS
- Moving from a single blastability index for the blast to consider spatial heterogeneity of grade, rock mass and response ranking.

P2-003: Searching for Orebody DNA

Testing methods to identify and learn the recurring patterns in orebody mineralogy and then predict mineral heterogeneity within sparse datasets

Affiliation

Resources

- 6 people, 1.8 fte
- Students etc...
- Mar 2017 Mar 2018

Specialisation

- Data analytics
- 3D feature and pattern detection

Key results to date

• Results obtained for non-linear analytics, k-means clustering, image and signal processing methods, feature detection, machine learning.

- Demonstration of algorithms that avoid large scale averaging that occurs with conventional (e.g. Kriging) resource modelling methods
- Spatial and volumetric prediction of grades at higher resolution than conventional methods.

P2-004:

Real-time elemental and mineralogical analyser based on combined LIBS and Mid-IR spectroscopy

Proof of concept study to develop a novel new application of combined LIBS - Mid-infrared quantum cascade laser (QCL) spectroscopy for real time on-line mineralogical characterisations.

Affiliation

Resources

- 9 Research Officers
- 3 Technical Officers
- Aug 2017 July 2019

Specialisation

- Optical sensors for
- Real-time process control

Key results to date

- Review of current LIBS and IR technologies for mineral industry applications nearly completed
- Comparison of XRF, MLA and LIBS measurements on the same tiles in progress.

- Positive outcomes would generate a TRL5 ready application with proof-of-concept at lab scale for mineralogy measurement.
- Ready for field deployment and transfer to METS companies
- Fast, non-nuclear, in-field method for mineral assessment

P3-005: Coarse Particle Liberation & Recovery

Develop an ore characterisation method and subsequent model to evaluate liberation and separation methods for Au ore in the 4.75 – 0.3 mm size range

Affiliation

WASM Gold Technology Group at Curtin University

Resources

- 5 of 15 staff
- 4 of 10 HDR students
- Feb 2017 Feb 2020

Specialisation

- Ore characterisation
- Gangue rejection
- Optimisation

Key results to date

- Have developed and are refining ore characterisation method.
- Applying method to multiple ores with multiple crush types to investigate preferential liberation.
- Investigating various separation devices to determine optimal recovery scenarios for each ore and crush type.

- Understand attributes that make an ore amenable to coarse particle liberation by building a database of responses for various ore types, crushing modes and separation devices.
- Standardise the method and build a model in IES to predict responses and optimise recovery.

P3-006: AMIRA P9Q

Translate P9 research outcomes to an integrated process improvement tool (IES)

Affiliation

Resources

- 6 research institutes
- 11 industry sponsors
- 2017-2020

Specialisation

- Mineral processing
- Modelling

Key results to date

- Delivery of 6 process models in IES P9Q platform.
- Training workshop:
 - Introduction to IES.
 - Introduction to process models.

- Integration of comminution and flotation.
- 11 validated multi-component models.
- 2 test circuits for validation of process integration.

P3-008:

Comminution optimised for Grade Engineering

Enhancing coarse gangue liberation through precisely controlled breakage energy using traditional and next generation Vertical Shaft Impactor (VSI) technologies

Affiliation

Resources

- RM, VJ, CA, PW
- 3 MPhil students
- Nov 2017 Oct 2019

Specialisation

- Ore characterisation
- Selective ore breakage

Key results to date

- Project is in the early stages.
- One student has started.
- Some preliminary testing has been carried and the results have been reported to CRC ORE.

What success looks like

- Rejection of coarse clean gangue from a wider range of ore types.
- Use precisely controlled breakage to enhance the current GE approach.
- Laboratory testing protocols to identify ores suitable for coarse liberation.
- Significant reduction in unite energy consumption

Optimising Resource Extraction

P4-003:

Data-driven models

Develop robust and effective data analytics approaches to extract value from data typically collected in the ore mining industry

Affiliation

Resources

- 5 academics
- Jan 2017 Dec 2018

Specialisation

- Data analytics
- Mathematical modelling
- Data-driven models

Key results to date

- Methodology and scripts to pre-process and analyse disparate data sets with visualisation in Power BI.
- Paper: Computational Modelling 2017
- Implementation of *uncertainty quantification* approaches to calibrate a crusher process model
- Initial approach to create machine learning models using process data and ore data

- New data-driven approach to calibrate process models using online process data, based on uncertainty quantification.
- Collection of methods and scripts to generate machine-learning based process models.
- Methods and scripts to clean, pre-process, and extract useful information from data (e.g. processing recipes).

P4-004:

Implementation Accelerator

Embed a process to fast track the implementation of CRC ORE's technologies, based on Clareo's proven FastPath methodology, incorporating principles of LEAN start-up and learning

Affiliation

Resources

- 4 person Clareo team
- CRC ORE members
- Pilot project

Specialisation

 Rapid and lean approach to innovation implementation

Key results to date

 Kicked off engagement in November after alignment on scope and approach.

- Develop and deliver an Accelerator program designed for CRC ORE.
- Deploy on one demonstration project initially.
- Once proven, wider deployment of the Accelerator program across CRC ORE.

Contact Us

Paul Revell
0429 701 158
p.revell@crcore.org.au

crcore.org.au

