ACCELERATING IMPACT

Session 1

Prof. Robin Batterham AOUniversity of Melbourne

Kernot Professor of Engineering

CROSSING THE GREAT DIVIDE: BALANCING IMAGINATION & APPLICATION IN RESEARCH

- The nature of mining research, has it changed?
- Mining in the future

BHP DATA FROM 15 YEARS AGO: A LINEAR PROCESS

Optimising Resource Extraction

MINERAL PROCESSING FACES SOME EXTREME CHALLENGES. WILL INCREMENTAL IMPROVEMENT BE ENOUGH?

Let's look at copper

EXPLORATION SEEMS UNLIKELY TO REVERSE THE TREND

Note: No adjustment has been made for unreported discoveries or potential upgrades in known deposits Tier 1 deposits are World Class Mines

Tier 2 deposit have some but not all the characteristics of a $\,$ T1

DECREASING GRADE ENTAILS MORE ENERGY

DECLINING GRADE HAS BEEN THE MAIN DRIVER OF INCREASING SIZE OF FLOTATION PLANT

IS AUTOMATION, DEEP DATA, DATA ANALYTICS ENOUGH?

DESPITE THE 100 YEAR MARCH OF DECREASING COSTS, SOME SEE LITTLE IMPROVEMENT IN THE FUTURE

SO, DO FAST FOLLOWERS BEAT FIRST LEADERS?

John Marsden. Plenary lecture:

"Technological Innovation and Sustainable Competitive Advantage in the Copper Industry – Real or Imaginary?"

- 100 years of analysis of 20+ innovations in the copper industry
- Most took 30+ years before half the industry followed
- First movers had NPV positive results > industry returns
- Fast followers also superior but not as great as first movers

MORE GENERALLY, HAS MINING RESEARCH CHANGED?

- Addressing the challenges, note the efforts in "open innovation"
 - A string of CRC's
 - The Rio Tinto \$55m, Alcoa \$55m, Apple \$13m, Canada \$60m, Quebec \$60m investment in carbon free aluminium production
- And investment in "rapid innovation"
 - CRCORE a prime example
 - Many others, particularly in China

And now, mining in the future

How brave do we need to be?

Can we balance imagination and application?

THE ULTIMATE STEP: ISR

In-situ recovery (ISR): a mining process used to recover minerals through boreholes drilled into a deposit, in situ

WHY IS ISR ATTRACTIVE?

ISR NOW A KEY PRODUCTION METHOD FOR URANIUM

World Uranium Production by Mining Method 2000-2016

STEPS TO ISR: BALANCING IMAGINATION AND APPLICATION

- Significantly reduced surface footprint
- Reduced mine transportation infrastructure - waste material remains in mine
- Smaller processing plant size due to higher grade feed and processing underground
- Reduction in tailings dam
- Modular production units with the ability to scale or contract as required
- Reduced energy

inline recovery

- Reduced material movement
- Underground extraction
- Selective (precision) mining
- Pre-concentration at the face
- Ore sorting technologies
- Underground modular plant

inmine recovery

- Low to no material movement
- Underground extraction
- Fracturing ore in place underground
- Leaching to extract ore

INDIVIDUAL PROGRESS ON TECHNOLOGY DEVELOPMENTS:

- Barrier technology (routine in oil and gas) both as barriers and to minimize short circuiting
- Designer bugs
- Eh-pH manipulation for primary sulphides
- Geophysics for real time tracking of lixiviate
- Chemical tracers and nanoparticles
- Automated small bore drilling for permeability control
- Flood irrigate (saturated or not...) to minimize pumping costs

CONCLUSION

- Mining in the future is now imaginable with almost no environmental footprint and much improved economics
- The individual steps necessary to prove up in place mining are being trialled commercially and supported by extensive R&D.
- Rapid and open innovation are key to unlocking the future
- As John Marsden indicates, first movers are generally winners

Additional slides

Business

Centres Program

TECHNOLOGY UPTAKE – FAST FOLLOWERS

ISR IS NOT A SILVER BULLET

Precise geology, chemistry, rock properties, hydrogeology and other local factors combine so that ISR is not the "silver bullet" for all future opportunities.

SOME EXAMPLES OF GAME CHANGERS

Advances in blasting:

- Explosives now available from half to three times the relative bulk strength of ANFO
- Electronic ignition soon to be wireless (regulatory hurdles noted)
- High fidelity blast models

HIGH LIFT DRAWBELL PLUS POST CONDITIONING CONCEPT

- Box hole to create free face
- Large diameter preconditioning blastholes
- All blastholes loaded from the draw point

Could the concept be adopted for an insitu reactor ??

LOW COST DRILLING, STEERING AND FRACCING

Low cost drilling and geosteering means improved fracture matrix development

MODELLING RAPIDLY IMPROVING

Challenges in subsurface fracture occurrence, characterisation, network detection and flow modelling

NEW STIMULATION TECHNOLOGIES EMERGING

 Under development/study is the use of microwaves, sonic waves, temperature gradients, high voltages, injectable explosives, percussion techniques, pulsed combustion et al.

One example:

NaturaFrac Pulsed Combustion Formation Stimulation Technology Highlights

Game Changing

- · Water-Free Stimulation For Subterranean Rock Structures
- Advanced Rocket Science + Advanced Rock Mechanics
- A More Complex And Optimal Fracture Matrix

Safe & Environmental

- Horsepower Put Down-Hole Via Pulsed Combustion Physics
- · LNG/Air or Diesel/Air Propellants
- Reduced Surface Footprint & Complexity

Economic

- Flexible Tool To Match The Formation Response Requirements
- More Resource Production Potential Per Well
- Lower Projected CapEx & OpEx Over Current Technologies
- Flexible Tool Architecture For Multiple Markets/Applications

COPPER AND GOLD: THE TRAIL BLAZERS IN ELIMINATING MINERAL PROCESSING

Numerous examples of leaching in place after blasting

- Both primary and secondary sulphides
- Often after other mining completed

ISR commercial operations emerging

Florence, Gunnison, Uralgidromed / Gumeshevskove

UNDERSTANDING OF SECONDARY PRODUCT FORMATION

 Secondary product formation influenced by (gangue) mineral dissolution, temperature, solution pH

- Sulfur
- Iron, metal hydroxide precipitates
- Calcium sulfate (gypsum)
- Silica gel
- Iron-deficient copper sulfide surface layers

CASE STUDY: FLORENCE COPPER

- Expected full commercial life of project: 25 years
- 55 million pounds annually for first six years, 85 million pounds annually for 14 years

Source: CSIRO In-situ recovery symposium (May/June 2017)

CASE STUDY: FLORENCE COPPER

- 2-year production test facility: pilot-scale demonstration
- 24 wells over 2 acres, 4 injection wells, 9 recovery wells, 4 geochemical sampling wells, 7 observation wells
- '99.5% water and 0.5% sulfuric acid, and similar in pH to household vinegar'
- SX/EW to manufacture 1–2 million pounds of 99.999% pure copper cathode

Excelsior Mining Corp

TSX: MIN / OTCQX: EXMGF

- Canadian junior listed company with head office in Phoenix, AZ
- Core facility in Casa Grande & mine office at Johnson Camp (Gunnison)
- Sole focus: Gunnison Copper Project, Cochise County, AZ

Highlights:

- · In-situ recovery of Cu oxide resource
- US\$52M spent since 2010
- · Ex-Magma Copper Co. project
- Feasibility complete: low Opex & Capex
- Permitting underway (State and Federal)
- Production in Q2/Q3 2018

ACCELERATING IMPACT

Session 1

Prof. Robin Batterham AOUniversity of Melbourne

Kernot Professor of Engineering

